nosql的介绍以及和关系型数据库的区别

一直对非关系型数据库和关系型数据库的了解感觉不太深入,在网上收集了一些关于sql和nosql的区别和优缺点分享给大家。

Nosql介绍

Nosql的全称是Not Only Sql,这个概念早起就有人提出,在09年的时候比较火。Nosql指的是非关系型数据库,而我们常用的都是关系型数据库。就像我们常用的mysqlsqlserver一样,这些数据库一般用来存储重要信息,应对普通的业务是没有问题的。但是,随着互联网的高速发展,传统的关系型数据库在应付超大规模,超大流量以及高并发的时候力不从心。而就在这个时候,Nosql得到的告诉的发展。

 

Nosql和关系型数据库的区别

1.存储方式

  关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

 

2.存储结构

  关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。

 

3.存储规范

  关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个操作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

 

4.存储扩展

  这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,操作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

横向扩展是已扩展服务器的数量进行高并发的处理(增强处理业务的能力)

 

根据配置nginx的反向代理,转发服务器(配置的ip)进行轮换处理业务(可加入负载均衡器进行分发请求)

 

纵向扩展,是增加单机的处理能力,一般增加cpu的处理能力

 

 

5.查询方式

  关系型数据库通过结构化查询语言来操作数据库(就是我们通常说的SQL)。SQL支持数据库CURD操作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元操作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询操作,而Nosql更简单更精确的数据访问模式。

 

6.事务

  关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。

 

柔性事务满足Base理论(基本可用、最终一致性)CAP理论。

刚性事务满足ACID理论。

 

 

1. 原子性

原子性是指事务是一个不可再分割的工作单元,事务中的操作要么都发生,要么都不发生。

可采用A向B转账”这个例子来说明解释

DBMS中,默认情况下一条SQL就是一个单独事务,事务是自动提交的。只有显式的使用start transaction开启一个事务,才能将一个代码块放在事务中执行。

2. 一致性

一致性是指在事务开始之前和事务结束以后数据库的完整性约束没有被破坏。这是说数据库事务不能破坏关系数据的完整性以及业务逻辑上的一致性

A给B转账,不论转账的事务操作是否成功,其两者的存款总额不变(这是业务逻辑的一致性,至于数据库关系约束的完整性就更好理解了)。

保障机制(也从两方面着手):数据库层面会在一个事务执行之前和之后,数据会符合你设置的约束唯一约束,外键约束,check约束)和触发器设置;此外,数据库的内部数据结构(如 B 树索引或双向链表)都必须是正确的。业务的一致性一般由开发人员进行保证,亦可转移至数据库层面。

3. 隔离性

多个事务并发访问时,事务之间是隔离的,一个事务不应该影响其它事务运行效果。

在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。由并发事务所做的修改必须与任何其他并发事务所做的修改隔离。事务查看数据更新时,数据所处的状态要么是另一事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看到中间状态的数据

事务最复杂问题都是由事务隔离性引起的。完全的隔离性是不现实的,完全的隔离性要求数据库同一时间只执行一条事务,这样会严重影响性能。

关于隔离性中的事务隔离等级(事务之间影响),参见相应博文

4. 持久性

这是最好理解的一个特性:持久性,意味着在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。(完成的事务是系统永久的部分,对系统的影响是永久性的,该修改即使出现致命的系统故障也将一直保持)

write ahead loggingSQL Server中使用了WAL(Write-Ahead Logging)技术来保证事务日志的ACID特性,在数据写入到数据库之前,先写入到日志,再将日志记录变更到存储器中。

 

 

7.性能

  关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。

 

8.授权方式

  关系型数据库通常有SQL ServerMysqlOracle。主流的Nosql数据库有redismemcacheMongoDb。大多数的关系型数据库都是付费的并且价格昂贵,成本较大,而Nosql数据库通常都是开源的。

 

RedisMemcacheMongoDb的特点与区别

 

Redis

优点

1.支持多种数据结构,如 string(字符串)、 list(双向链表)dict(hash)set(集合)、zset(排序set)

2.支持持久化操作,可以进行aofrdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失  的手段。
3.支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。
4.单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。
5.支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。
6.支持简单的事务需求,但业界使用场景很少,并不成熟。

缺点

1.Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
2.支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。
3.Redisstring类型上会消耗较多内存,可以使用dicthash表)压缩存储以降低内存耗用。

 

Memcache

优点

1.Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于keyvalue的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。
2.支持直接配置为session handle

缺点

1只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。
2.无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。
3.无法进行数据同步,不能将MC中的数据迁移到其他MC实例中。
4.Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。

 

MongoDB

优点

1.更高的写负载,MongoDB拥有更高的插入速度。
2.处理很大的规模的单表,当数据表太大的时候可以很容易的分割表。
3.高可用性,设置M-S不仅方便而且很快,MongoDB还可以快速、安全及自动化的实现节点(数据中心)故障转移。
4.快速的查询,MongoDB支持二维空间索引,比如管道,因此可以快速及精确的从指定位置获取数据。MongoDB在启动后会将数据库中的数据以文件映射的方式加载到内存中。如果内存资源相当丰富的话,这将极大地提高数据库的查询速度。
5.非结构化数据的爆发增长,增加列在有些情况下可能锁定整个数据库,或者增加负载从而导致性能下降,由于MongoDB的弱数据结构模式,添加1个新字段不会对旧表格有任何影响,整个过程会非常快速。

缺点

1.不支持事务。
2.MongoDB占用空间过大 。
3.MongoDB没有成熟的维护工具。

 

RedisMemcacheMongoDB的区别

1.性能

三者的性能都比较高,总的来讲:MemcacheRedis差不多,要高于MongoDB

2.便利性

memcache数据结构单一。
redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数。
mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。

3,存储空间

redis2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)。
memcache可以修改最大可用内存,采用LRU算法。
mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起。

4.可用性

redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡。
Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。
mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5.可靠性

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响。
memcache不支持,通常用在做缓存,提升性能。
MongoDB1.8版本开始采用binlog方式支持持久化的可靠性。

6.一致性

Memcache 在并发场景下,用cas保证一致性。
redis事务支持比较弱,只能保证事务中的每个操作连续执行。
mongoDB不支持事务。

7.数据分析

mongoDB内置了数据分析的功能(mapreduce),其他两者不支持。

8.应用场景

redis:数据量较小的更性能操作和运算上。
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)。

Mongodb:主要解决海量数据的访问效率问题

 

Redis 简介

 

Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库。

 

Redis 与其他 key - value 缓存产品有以下三个特点:

 

  • Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
  • Redis不仅仅支持简单的key-value类型的数据,同时还提供listsetzsethash等数据结构的存储。
  • Redis支持数据的备份,即master-slave模式的数据备份。

 

 

 

Redis 优势

 

  • 性能极高 – Redis能读的速度是110000/s,写的速度是81000/s
  • 丰富的数据类型 – Redis支持二进制案例的 Strings, Lists, Hashes, Sets Ordered Sets 数据类型操作。
  • 原子 – Redis的所有操作都是原子性的,意思就是要么成功执行要么失败完全不执行。单个操作是原子性的。多个操作也支持事务,即原子性,通过MULTIEXEC指令包起来。
  • 丰富的特性 – Redis还支持 publish/subscribe, 通知, key 过期等等特性。

 

posted @ 2019-05-15 15:23  寒风孤影,江湖故人  阅读(11428)  评论(0编辑  收藏  举报